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Abstract. We consider periodic microstructures composed of flexoelectric, or piezoelectric ma-
terials and involving electrodes which enable for control of the response due to the electrome-
chanical transmission and tunable external electric circuits. The asymptotic homogenization
is employed to derive models describing the effective properties of such metamaterials. Piezo-
electric or dielectric materials with a weak flexoelectric property, constituting the skeleton of
general periodic porous structures enable to generate the strain gradients. Using the asymptotic
homogenization, it is shown that effective behaviour of such materials is piezoelectric, whereby
the homogenized piezoelectric coefficients are computed using the characteristic responses of
the flexoelectric microstructure.
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1 INTRODUCTION

Conventional materials propagate waves with very limited attenuation and are not able to
effectively damp or manipulate wave propagation. Metamaterials are characterized by peri-
odic microstructures which, although composed of conventional materials, due to appropriate
microstructural design, provide astonishing macroscopic features such as negative refraction,
negative equivalent moduli, and negative equivalent density; this last property give rise to the
“anti-resonance” effect and, consequently, to the frequency band gaps [1]. However, these fea-
tures do not contain the flexibility to change or tune the wave propagation according to the
loading frequencies. An extension of passive metamaterials to electroactive metamaterials pro-
vides several options to both tune and change their dynamic response in real-time applications
[2, 3].

Combination of passive elastic metamaterials with electroactive materials enriches the wave
control abilities of heterogeneous structures and paves the way for designing waveguides, di-
rectional vibration insulators, and one-way filters. In this regard, an external electric circuit,
also known as a shunting circuit connected to such structures and involving tunable resistors,
inductors, and capacitors, can modify the effective mechanical properties of the whole structure
and, thus, provides an opportunity for adjusting band gaps [2, 4]. Moreover, the electrical field
can be applied through boundary conditions to tune the band gap properties instead of changing
the material or geometry of a heterogeneous structure. The employment of phononic crystals
(PCs) along with piezoelectricity can be designed with a multi-objective criterion, to work effi-
ciently in several simultaneous applications, such as simultaneous vibration control and energy
harvesting [3, 5].

Besides the piezoelectric materials, the flexoelectric microstructures can be considered to
provide the electromechanical coupling. The flexoelectricity is a property of all dielectric mate-
rials, occurring in both centrosymmetric and asymmetric crystals when strain gradient is gener-
ated. Conversely, also a ”hyperstress” is generated due to gradient of electric field, contributing
to the material stiffness. Both these direct and reverse effects appear at small scales, rather then
at the “macro-level”. Physics of the flexoelectric materials has been studied recently within the
thermodynamic framework in [6], where the complexity of the interface and boundary condi-
tions has been explored for various types of the flexoelectric constitutive laws.

The aim of this short paper is two-fold. Firstly we show an example of electroactive meta-
material plate based on the “resonance effect” due to the high contrast in the elasticity and on
the piezoelectric sensor/actuator components which can be interconnected using an external
electric circuit (EEC). We illustrate, how the frequency bang gaps in the wave propagation can
be modified by an EEC. The electromechanical coupling, namely the transformation of local
strains into local electric field can be ensured by flexoelectric microstructures. We show that a
suitable microstructure give rise to an “effective” piezoelectric behaviour. The asymptotic ho-
mogenization method [7] is employed to explore behaviour of weakly flexoelectric periodically
heterogeneous materials, cf. [8, 9] analogous treatment of “controllable weakly piezoelectric
metamaterials” . Related works appeared recently, see e.g. [10, 11, 12], including higher or-
der homogenization which naturally leads to effective constitutive laws involving higher-order
gradients. Therefore, the effective flexoelectric mathematical models can be obtained by up-
scaling heterogeneous piezoelectric materials, [13]. However, it has been demonstrated in [14]
using numerical simulations, that piezoelectric metamaterials can be designed by lattice peri-
odic structures made of dielectric materials exhibiting the flexoelectricity. The present study
reported here confirms this qualitative result by the homogenization. Analytic result is derived
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for a 1D periodic rods designing a porous structure.

2 ELECTROACTIVE PIEZOELECTRIC METASTRUCTURES FOR BAND GAP CON-
TROL

As illustrated in Fig 1, a two-dimensional heterogeneous plate consisting of a piezoelectric
matrix and non-piezoelectric inclusions is considered [5]. The band gap diagram is evaluated

Figure 1: Periodic structure of the electroactive composite and one reference cell.

for this configuration and presented in Fig 2. To investigate the impact of the piezoelectric fea-
ture on band gap characteristics, we compare the band gap (BG) diagrams of the unit cell with
pure-elastic matrix and the one with piezoelastic matrix.

(a) (b)

Figure 2: (a) Band gap diagram and comparison between pure elastic and piezoelectric elastic
cases (b) Appearance of a resonance curve due to the external circuit.

The BG diagram for the pure-elastic case can be obtained by setting the piezoelectric cou-
pling tensor to zero. Fig 2 a illustrates the effect of the coupling tensor on band gap properties,
with a focus on the first two band gaps. A moderate difference of 40 [Hz] is observed between
the third mode of the pure-elastic (2105 [Hz]) and piezoelastic (2145 [Hz]) cases. Another in-
teresting feature enabled by the external circuit is the introduction of a new resonance branch
in the band gap diagram. A simple circuit containing a resistor and an inductor in series can
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create this branch as shown in Fig 2 b. In the example with R = 10[kOhm] and L = 1.3[H],
the branch frequency is set to around 1600 [Hz].

2.1 Self-powered meta-structure

In this section, we investigate how the vibrations can be attenuated using the piezoelectric
meta-plate property which enables to connect responses at two (or more) distant point by electric
circuits (Fig 3). The coupling is made by an electric circuit (EC) represented by an impedance
associated with the standard elements: capacitors, inductors, and resistors arranged in series and
parallel branches. The electroactive metastructure is influenced by the electrodes connecting the

Figure 3: Schematic of the self-powered vibration control and the electrical circuit

electroactive structure to external circuits. These electrodes are considered to be thin enough so
their mechanical effects are negligible, and they only act as electrical boundary interfaces. The
weak formulation governing the response of the structure has the following form:
find (uε, ϕε) ∈ (V0(Ω),Φ0(Ω)) for all (v, ψ) ∈ (V0(Ω),Φ0(Ω) such that:

− ω2

∫
Ω

ρu · v +
∫
Ω

σ(u, ϕ) : e(v) =
∫
∂Ω

(n · σ) · v dS +

∫
Γσ

b · v dS ,∫
Ωm

D(u, ϕ) · ∇ψ =
∑

K=A,B

∫
ΓK

D · nψ dS ,
(1)

The normal electric displacement D · n at electrode ΓK is expressed in terms of the electric
current IK , so that

JK(IK , ψ) :=

∫
ΓK

D · nψ dS =
1

iω
IKψ̄K , K = A,B ,

IK =

∫
ΓK

j · n dS ,

(2)

where j denotes the current density. The Kirchhoff’s law yields the circuit equations involving
currents IA, IB and IC and the two potentials ϕA and ϕB,

IA,n + IB,n = IA,n+1 ,

IA,n+1Z = φA,n+1 − φA,n ,
(3)
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Figure 4: Amplitude of vibration on the control cell for the cases of disconnected, short cir-
cuited, connected with initial circuit, and connected with optimized circuit

The dynamic response of the metastructure at the control point is depicted in Fig 4 for several
scenarios. For the disconnected circuit, the amplitude of vibrations is 1.80e-6 meters. This
amplitude decreases to 1.45e-6 meters and 1.34e-6 meters for the short circuit and initial cir-
cuit scenarios, respectively. In the optimized circuit scenario, the amplitude drops from 1.80e-6
meters (disconnected circuit) to 0.83e-6 meters, representing a 54 percentage reduction in vi-
brations within the control cell.

3 PIEZOELECTRIC METAMATERIAL WITH FLEXOELECTRIC MICROSTRUC-
TURE

We consider piezoelectric or dielectric materials with a weak flexoelectric property, consti-
tuting the skeleton of periodic porous structures which enable to generate the strain gradients.
Using the asymptotic homogenization, it is shown that effective behaviour of such materials
is piezoelectric, whereby the homogenized piezoelectric coefficients are computed using the
characteristic responses of the flexoelectric microstructure.

3.1 Micromodel

The piezo-flexoelectric material model involves the stress σij and the electric displacements
Dk which are introduced by

σij = Cijklekl − γijkEk + µijkl∂lEk ,

Dk = γijkeij + κklEl + µ∗
klij∂leij ,

(4)

incorporating the gradients of the strain eij(u) and electric field Ei(φ), where

Ei(φ) = −∂iφ , electric field E⃗ = (Ei) due to the electric potential φ ,

eij(u) =
1

2
(∂jui + ∂iuj) , strain due to the displacement u = (ui) .

(5)

In general, all the material tensors, i.e. Cijkl, γijk, κkl and µijkl = µ∗
klij are periodically os-

cillating functions in space, being defined by zero in the voids of the porous material. The
displacement u = (ui) and electric potential φ satisfy the momentum electric charge equilibria
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imposed in the solid,

−∂iσij + ρüi = fi ,

∂kDk = qE ,
(6)

where variables ρ, fi, and qE are the density, volume forces and volume electric charge, re-
spectively. The boundary conditions on ∂extΩs∂ = Ωs ∩ ∂Ω, partitioned into non-overlapping
subparts Γu,Γφ and Γσ, are given, as follows:

u = 0 , on Γu ,

φ = φ̄ , on Γφ ,

njσij = b̂i , on Γσ ,

niDi = q̂E = 0 , on ΓE0 .

(7)

Natural continuity conditions are applied on interfaces Γrs between different materials ( the
higher continuity due to the flexoelectric property)

[njσij] = 0 , [njDj] = 0 ,[
nlµ

∗
klijeij

]
= 0 , [nlµklijEi] = 0 ,

(8)

assuming continuous displacement and the el. potential, [ui] = 0, and [φ] = 0 on any interface
Γrs.

The symmetry in the direct and converse flexoelectric effect yields µ∗
klij − µijkl = 0 and the

higher order interface conditions[
nlµ

∗
klijeij(u)

]
= [µijkl∂kφnl] = 0 . (9)

Under these assumptions, i.e. µ∗
klij = µijkl and (9), from (??) the uniform estimates with respect

to ε (the heterogeneity scale) on the strain eij(u) and electric field ∂kφ can be obtained.

Interfaces of the heterogeneity By the heterogeneity induced interface we mean manifolds
Γrs = ∂Ωr ∩ ∂Ωs separating domains Ωr,Ωs in which all material parameters are constant, or
smoothly varying, while any material parameter can be discontinuous (having a jump) on Γrs.
We assume the following continuity:

nknl

[
µ∗
klijeij(u)

]
= 0 ,

njnl [µijkl∂kφ] = 0 .
(10)

3.2 Homogenization of periodic porous structures

The solid forms the skeleton of a porous medium which has a periodic structure characterized
by length ℓ, such that ε = ℓ/L is small with respect to the “macroscopic” length L. The aim is
to obtain a homogenized model representing the porous medium in the limit ε→ 0.

3.2.1 Microstructure

We consider a porous domain Ω ⊂ Rd, d = 2, 3 occupied by a piezo-flexoelectric solid
in Ωε

s ⊂ Ω. The material is assumed to be defined by piecewise constant material properties
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Cijkl, γijk, κkl and µijkl = µ∗
klij , thus, Ωε

s consists of subparts Ωk,ε
s , labeled by k, with interfaces

Γε
kl = ∂Ωk,ε

s ∩ ∂Ωl,ε
s . The solid skeleton is represented by a periodically heterogeneous con-

tinuum generated by copies of the (zoomed) representative periodic cell, Y =]0, ȳ[, such that
Ys ⊂ Y is the skeleton and Y0 = Y \ Ys is the void pore. In order to guarantee the strain and
electric field gradients are bounded uniformly with respect to ε when µ ≈ ε, we assume the
scaling of the unfolded coefficients µε,

Tε

(
µε
ijkl(x)

)
= εµ̄ijkl(y) . (11)

The formal homogenization procedure is applied with asymptotic expansions of displace-
ments and electric potential which can be introduced formally,

Tε(uε) ≈ u0ε(x) + εu1ε(x, y) + ε2u2ε(x, y) + . . . ,

Tε(φ
ε) ≈ φ0ε(x) + εφ1ε(x, y) + ε2φ2ε(x, y) + . . . ,

(12)

where Tε() is the unfolding operator, x ∈ Ω and y ∈ Ys. The limit equations can be derived upon
substituting (12) into (6). The obtained two-scale model is presented below through the char-
acteristic responses – autonomous solutions (displacements w, z , and electric potential ϕ, ζ)of
the local microscopic problems, and the macroscopic model governing (u0, φ0) defined in the
homogenized medium Ω. To do so, we employ the following bilinear forms

aYs (u, v) =∼
∫
Ys

[CCey(u)] : ey(v) dVy ,

g∗Ys
(u, ψ) =∼

∫
Ys

g∗kije
y
ij(u)∂

y
kψ dVy ,

dYs (φ, ψ) =∼
∫
Ys

[κ∇yφ] · ∇yψ dVy ,

mYs (ψ, u) =∼
∫
Ys

µ̄ijkl∂
y
l ∂

y
kψe

y
ij(u) dVy ,

m∗
Ys
(u, ψ) =∼

∫
Ys

µ̄∗
klij∂

y
l e

y
ij(u)∂

y
kψ dVy .

(13)

Note the symmetry gijk = g∗kij and µ∗
klij = µijkl.

Due to the problem linearity, the two-scale functions can be expressed using the characteristic
responses (wij, ϕij) ∈ H1

#(Ys)×H1
#(Ys) and (zk, ζk) ∈ H1

#(Ys)×H1
#(Ys)

u1 = wijexij(u
0) + zk∂xkφ

0 ,

φ1 = ϕijexij(u
0) + ζk∂xkφ

0 ,
(14)

where the couple (wij, ϕij) satisfies

aYs

(
wij +Πij, v

)
+ g∗Ys

(
v, ϕij

)
−mYs

(
ϕij, v

)
= 0 , ∀v ∈ H1

#(Ys) ,

g∗Ys

(
wij +Πij, ψ

)
− dYs

(
ϕij, ψ

)
+m∗

Ys

(
wij, ψ

)
= 0 , ∀ψ ∈ H1

#(Ys) ,
(15)

and (zk, ζk) satisfies

aYs

(
zk, v

)
+ g∗Ys

(
v, ζk + yk

)
−mYs

(
ζk, v

)
= 0 , ∀v ∈ H1

#(Ys) ,

g∗Ys

(
zk, ψ

)
− dYs

(
ζk + yk, ψ

)
+m∗

Ys

(
zk, ψ

)
= 0 , ∀ψ ∈ H1

#(Ys) .
(16)
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The effective medium properties are characterized in terms of the homogenized coefficients of
a piezoelectric constitutive law involving the elasticity IDH = DH

ijkl, the piezoelectric coupling
GH = (GH

ijk), GH∗ = (GH∗
kij ), and the dielectricity QH = (QH

kl). These are expressed through
the characteristic solutions of (15) and (16),

DH
klij = aYs

(
wij +Πij, Πkl

)
+ g∗Ys

(
Πkl, ϕij

)
−mYs

(
ϕij, Πkl

)
,

GH
ijk = aYs

(
zk, Πij

)
+ g∗Ys

(
Πij, ζk + yk

)
−mYs

(
ζk, Πij

)
,

GH∗
kij = g∗Ys

(
wij +Πij, yk

)
− dYs

(
ϕij, yk

)
+m∗

Ys

(
wij, yk

)
,

−QH
kl = g∗Ys

(
zk, yl

)
− dYs

(
ζk + yk, yl

)
+m∗

Ys

(
zk, yl

)
.

(17)

The macroscopic equations of the homogenized weakly flexoelectric periodic medium attain
the following form: ∫

Ω

(
IDHe(u0) + GH∇φ0

)
: e(v0) =

∫
Ω

(fH − ρH ü0) ,∫
Ω

(
GH∗ : e(u0)− QH∇φ0

)
· ∇ψ0 = 0 ,

(18)

for all v0 ∈ V0(Ω) and all ψ0 ∈ Φ0(Ω).

3.3 1D heterogeneous continuum

We consider rods with periodically varying piece-wise constant cross-section. Equivalently,
prismatic rods with periodically varying material properties can be treated by virtue of the 1D
reduced model.

3.3.1 Flexoelectric rods with variable cross-sections

Material properties are assumed to be piecewise constant, however, the rod cross-section can
vary “arbitrarily” (e.g. conic segments); regarding the examples treated in the paper, we consider
the decomposition of Y into subsets – segments (rod segments, OR layers) Yi =]yi−1, yi[, i =
1, . . . , n with 0 = y0 < y1 < . . . yn = ȳ, such that Y = Y1 ∪ · · · ∪ Yn with Yi ∩ Yj = ∅ for
i ̸= j, Correspondingly, Ωk,ε

i ⊂ Ω refers to any real-sized segment, whereby index k refers
to the lattice coordinate ξk defined above. In this respect, Ω × Yi is the unfolded subdomain
involving all i-th layers, thus, representing the union

⋃
k∈ZΩ

k,ε
i . The modelling is based on the

following equations (no piezoelectric effect!)

∂(Ci∂u− µi∂
2φ) = f , ∂(κi∂φ− µi∂

2u) = 0 , (19)

to be satisfied in n sub-intervals Ii =]li, li+1[ of Î =
⋃

i Ii. Potential φ can be eliminated,

Ci∂
2u− µ2

i

κi
∂4u = f , ∂2φ =

µi

κi
∂3u . (20)

Obvious integration is applied to derive the week formulation,∑
i

∫ li+1

li

(
Ci∂u∂v +

µ2
i

κi
∂2u∂2v

)
dx+

∫ ln

l0

fvdx

=
∑
i

[
v

(
Ci∂u−

µ2
i

κi
∂3u

)]li+1

li

−
∑
i

[
∂v
µ2
i

κi
∂2u

]li+1

li

,

(21)
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for all v ∈ H2(Î) ∩ H1(I) defined piece-wise H2(Ii). Hence, the right hand side vanishes if
the continuity and periodicity conditions (i.e. the cyclic continuity at l0 matching with ln) are
respected, as follows:

[u]Γ = 0 , [φ]Γ = 0 , [∂u]Γ = 0 , [∂φ]Γ = 0 ,

[C∂u− µ∂2φ]Γ = 0 , [κ∂φ− µ∂2u]Γ = 0 ,
(22)

where [ ]Γ represents the jump of the argument at any of all interfaces Γi = I i−1∩I i separating
the two sub-intervals (note the periodicity at Γ0 ≡ Γn). It is easy to see that the couple (u, φ) is
represented by 6 constants at any Ii, so 6n constants for the whole rod ]l0, ln[, which are deter-
mined due to the 6n conditions (22). In the context of the homogenization, analytic solutions of
local problems (15)-(16) for such piece-wise homogeneous rods with Ys represented by ]l0, ln[
can be obtained.

3.3.2 Characteristic responses for the 1D continuum

The homogenization procedure described above leads to the characteristic problems (15)
and (16). The characteristic response (w, ϕ) (the strain correctors of the displacement and the
electric potential) to the unit macroscopic strain in the 1D continuum is obtained upon solving
the following system of equations, incorporating the constitutive laws,

σk := Ck(1 + w′)− µkϕ
′′ , [σ∗] = 0 ,

Dk := κkϕ
′ − µkw

′′ , [D∗] = 0 ,

involved in the equilibrium and charge conservation in all sub-intervals, being supplemented by
the interface continuity conditions, as follows,

(Ck(1 + w′)− µkϕ
′′)′ = 0 , y ∈]yk−1, yk[ ,

(κkϕ
′ − µkw

′′)′ = 0 , y ∈]yk−1, yk[ ,

interfaces: y∗ ∈ {yk}k=0,...,n : [w] = [ϕ] = 0 ,

[µw′] = [µϕ′] = 0 ,

[σ∗] = 0 ,

[D∗] = 0 ,

As the matter of fact, for the 1D problem, due to the continuity conditions, the characteristic
responses with respect to the macroscopic strain and the electric field are the same. In each
sub-interval ]yk−1, yk[, the solution is given by

wk(y) =
1

γ2k

(
ake

γky + bke
−γky

)
+ pky + rk ,

ϕk(y) =
µk

κk
w′

k(y) + qky + sk ,

where the 6 constants (ak, bk, pk, rk, qk, sk) are determined due to interface conditions and peri-
odicity.

9



E. Rohan, and A. Hosseinkhani, and R. Cimrman

# DH QH GH

A 1.0 1.0 -3.8276e-06
B 0.81429 0.81429 2.6491e-05

Table 1: Homogenized coefficients: elasticity DH , dielectricity QH , and the piezoelectric cou-
pling GH for the two microstructures shown in Fig. 5.

3.4 Examples of the homogenized flexoelectric structures

In this section, we aim to illustrate how the effective piezoelectric behaviour observed at
the macro-scale depends on the microstructure. We first consider the 1D problem described
above. We consider a flexoelectric medium governed by (19)-(22), such that the heterogeneity
is generated by piecewise constant, but different cross-section of a periodically heterogeneous
rod, as illustrated in Fig. 5. While the the case #A is symmetric (one can define a symmetric
cell Y ), in the case #B, the structure is non-symmetric. The characteristic solutions for the two
cases are illustrated in Fig. 6.

symmetric #A non-symmetric #B

Figure 5: The representative microstructure of the 1D periodic flexoelectric rods.

Tab. 1 shows values of the homogenized coefficients obtained for the two cases for the input
values of the microstructure material C = 1, κ = 1 and µ = 1 (measureless) for the scale
ε0 = 10−3:

The 3D case, implemented in the package SfePy [15] using fast tensor contractions [16], is
illustrated in Fig. 7 by means of the correctors (zk, ζk) from (16). Here, the non-symmetric
porous structure leads to a non-zero piezo-coupling tensors GH

ijk, GH∗
kij even for isotropic mate-

rial parameters on the micro-level.

4 CONCLUSIONS

Electroactive metamaterials (EMM) equipped with an external electric circuit (EEC) show
much better efficiency to damp or even stop undesired vibrations in a frequency range. Using
optimization of the EEC, band gap frequency ranges can be tuned. As an important feature,
so extended optimized EMM operate without any external energy source. The present study
proved a great multi-functional potential of the considered self-powered meta-structures for
applications requiring simultaneously vibration attenuation and energy harvesting.

Another challenging design option for the EMM design is to use a convenient flexoelectric
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strain corr.

electr. field corr.

Figure 6: The characteristic responses w and ϕ for the strain and electric field correctors.

material. The homogenized weakly flexoelectric medium provides the piezoelectric (PZ) prop-
erties. This can be of interest for various applications based on the PZ sensors or actuators,
including devices for the energy harvesting. It has been illustrated that the PZ coupling tensor
of the homogenized microstructure depends on the micro-architecture of the porous material –
a kind of non-symmetry is required to generate the piezoelectric effect.

Further research will pursue the numerical modelling and optimization of the microstructures
to amplify the PZ effect. As pointed out above, for microstructures containing piezoelectric ma-
terials, the higher-order homogenization generate the flexoelectric effect (direct and converse).
Hence the three scale homogenization via the micro-to-meso and meso-to-macro upscaling us-
ing the higher order terms leads to the macroscopic flexoelectric model. The efficiency of so
generated flexoelectric effect is to be explored.
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[15] Cimrman, R., Lukeš, V., Rohan, E., Multiscale finite element calculations in Python using
Sfepy, Advances in Computational Mathematics, 45, 1897–1921, 2019.

[16] Cimrman, R., Fast evaluation of finite element weak forms using python tensor contraction
packages, Advances in Engineering Software, 159, 103033, 2021.

13


	INTRODUCTION
	ELECTROACTIVE PIEZOELECTRIC METASTRUCTURES FOR BAND GAP CONTROL
	Self-powered meta-structure

	PIEZOELECTRIC METAMATERIAL WITH FLEXOELECTRIC MICROSTRUCTURE
	Micromodel
	Homogenization of periodic porous structures
	Microstructure

	1D heterogeneous continuum
	Flexoelectric rods with variable cross-sections
	Characteristic responses for the 1D continuum

	Examples of the homogenized flexoelectric structures

	CONCLUSIONS

