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Abstract. Effective regional risk assessment depends on accurate evaluations of hazard, ex-
posure, and vulnerability. Among these, exposure modelling is as crucial as robust hazard as-
sessment and a reliable understanding of the vulnerability of exposed elements. Traditionally,
exposure models have relied on census data, building-by-building surveys, and post-earthquake
damage assessments. More recently, interview-based surveys have supplemented these sources
by providing insights into building typologies. However, such methods face challenges including
limited data access, high costs, time-consuming processes, and dependency on expert judgment,
which may affect reliability. Advances in computational power and image processing have in-
troduced new methods for exposure modelling. Convolutional Neural Networks (CNNs), widely
used in machine learning, can efficiently classify building typologies based on visual patterns
from images, offering geo-referenced insights that enhance risk assessments. However, these
image-based methods are constrained by their reliance on visible features, mainly façades and
roofs, which may not capture the full structural diversity due to regional construction practices.
Tools like BRAILS [1] have achieved notable results using CNNs with street and satellite im-
agery, but they remain limited by their data sources. This paper proposes a novel, integrated
methodology that combines CNN-based image processing with data from field surveys, satellite
imagery, and interview-based surveys. By incorporating expert insights from interviews, the
method enhances CNN performance, providing a more reliable and explainable machine learn-
ing model for exposure modelling. This fusion captures context-specific features that are not
visually apparent in images, improving classification accuracy and better reflecting regional
construction practices. A preliminary application of this methodology in Bar Municipality,
Montenegro, demonstrates its potential.
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1 INTRODUCTION

The task of building inventory creation is critical, as the evaluation of reliable exposure is
an essential step for effective risk assessment. Identifying and characterizing building charac-
teristics significantly impacts the correct attribution of vulnerability class to buildings, which
is as important as generating a high-resolution geo-distributed building inventory. Generating
reliable exposure models is, therefore, a crucial aspect of risk assessment. Various sources have
been utilized so far to gather building inventory data to support seismic risk assessments, includ-
ing cadastral datasets [2, 3], census data on population and housing [4, 5, 6, 7], post-earthquake
vulnerability assessments [8, 9, 10, 11], on-the-ground surveys [12, 13], and interview-based
surveys [14, 15, 16]. These methods each contribute valuable information but come with signif-
icant limitations. Census and cadastral data often lack sufficient detail to accurately determine
building typologies. Furthermore, post-earthquake and on-the-ground surveys can be time-
consuming and costly, requiring human resources with technical expertise, which can introduce
subjectivity and bias in assigning the correct typology to buildings. Interview-based surveys,
though useful for gaining insights from local knowledge and expert opinions, may not be suit-
able for assembling geo-distributed building inventory unless referring to typologies in suitably
defined urban sectors [16]. Given these limitations, traditional data collection methods alone
are insufficient for creating the detailed, high-resolution exposure models necessary for reliable
risk assessments. As such, these traditional methods should be considered supplementary rather
than definitive sources of information.

Recent advances in computational capabilities and machine learning, particularly in image
processing, offer promising solutions to exposure modelling. Image-based techniques now en-
able the identification of building features and categorization into typologies based on visual
patterns. This approach provides a rapid and efficient method for gathering geo-referenced in-
formation on building stock. By integrating street view imagery, such as Google Street View
(GSV), and satellite data with artificial intelligence, more reliable and spatially detailed expo-
sure models can be developed. GSV imagery, combined with machine learning techniques, has
gained significant attention due to its wide availability and extensive coverage. Numerous stud-
ies have employed this combination to estimate building age [17], screen for soft-story buildings
[18], detect building façade elements [19], classify roof types [20], and identify key building at-
tributes such as construction material, use, and condition [21]. Additionally, some studies focus
on predicting and classifying three essential pieces of information related to the vulnerability of
building typologies, namely construction material, number of stories, and construction epoch
[22]. These studies highlight the potential for automating workflows with machine learning,
achieving high accuracy and scalability in predicting building characteristics. However, image-
based approaches are inherently limited to visible features such as façades and roofs, which
may not fully represent regional construction practices.

To address these limitations, a hybrid model combining image-based processing with inter-
view -based surveys can be developed. Machine learning algorithms, particularly Convolutional
Neural Networks (CNNs), are well-suited for image classification tasks, yielding impressive re-
sults in predicting building typologies based on visual patterns. This hybrid model can leverage
visual patterns associated with similar typologies while also incorporating expert opinions on
characteristics that may not be discernible from satellite or street-view images. Interview-based
techniques are especially useful for capturing fundamental building information, such as the
construction year and construction practices, which are relevant to characterize a building’s
vulnerability and assist in identifying the typology of geo-referenced buildings. In this paper,
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we propose a CNN-based training process to predict the construction material of the lateral
load-resisting system, using visual similarities from images, along with transfer learning [23]
from the ImageNet dataset [24] with feature extraction and supplemental data, to enhance both
the accuracy and explainability, as well as the interpretability of the algorithm’s predictions.
The use of transfer learning allows for the improvement of efficiency and performance in CNNs
by utilizing pre-trained models, which is especially beneficial when limited training data is
available. Additionally, it is essential to ensure that the model’s predictions are clear and easy
to explain. This is important for decision-makers, as understanding how predictions are made
is necessary to effectively use the results in risk assessments. Additionally, a preliminary ap-
plication of this approach has been conducted in the municipality of Bar, Montenegro, where a
database consisting of both image and supplemental data was gathered.

2 EXPLORA-T SURVEY AND IMAGE DATA ACQUISITION

The proposed methodology aims to develop a representative model that predicts the build-
ing’s construction material of the lateral load-resisting system by classifying it as reinforced
concrete (RC), unreinforced masonry (URM), or confined masonry (CFM); those material types
are selected given their prevalence in Montenegro, as documented in [25] One of the crucial
steps in this methodology is to analyze the statistical distributions of relevant building charac-
teristics associated with different typologies in a specific area. This step ensures that all typolo-
gies are properly represented by their respective building characteristics and helps determine
the data collection process.

Since on-the-ground data collection is a time-consuming and costly procedure, it must be
optimized to develop a model that reflects general construction practices while ensuring there
is enough data to train the CNN model effectively. To achieve this, supplemental data sources,
such as cadastral data, census data, and interview-based surveys, can be utilized to understand
the construction practices and statistical distributions of building characteristics. For this pur-
pose, the EXPLORA-T survey, an interview-based survey, was conducted to determine the
building characteristics and their statistical distributions in Bar Municipality, Montenegro.

The EXPLORA-T survey, like the CARTIS form [16], aims to identify building typologies
and structural characteristics with their distribution within specific urban areas called ”Sec-
tors.” These sectors are defined as homogeneous zones where buildings share similar structural
characteristics and construction periods. The delineation of sectors is based on historical, bibli-
ographic, and documentary research, which provides insights into construction practice. Carto-
graphic and cadastral data, aerial imagery, and satellite data also help refine sector boundaries.

2.1 General Introduction and Description of Bar Municipality

Bar Municipality, characterized by its diverse urban landscape and strategic importance
along Montenegro’s Adriatic coast, was selected for the pilot study due to its varied building
types influenced by historical, coastal, and rural contexts. The area spans 598 square kilo-
metres, hosting a population of over 40,000, and serves as a critical hub for tourism, trade,
and cultural heritage. The diversity in building constructions, ranging from modern reinforced
concrete structures in the coastal areas to traditional masonry in rural regions, presents unique
challenges for exposure modelling. The Spatial Urban Plan of Bar outlines land use and charac-
teristics of the built environment and serves as an input for effectively dividing Bar municipality
within the sector necessary for EXPLORA-T survey realization.
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2.2 EXPLORA-T Survey of Bar

The EXPLORA-T survey in Bar was conducted to identify and document building typologies
across the municipality. This survey was particularly focused on assessing residential buildings.
Municipality was divided into three sectors to capture the variability across coastal, historic,
and rural areas (see Figure 1). Each sector presented distinct building characteristics that were
essential for understanding the regional construction practices:

• Coastal Area (Sector 01): Dominated by modern constructions related to tourism and
urban development. Buildings are primarily reinforced concrete with multi-story designs.

• Historic Area (Sector 02): Features a mix of medieval masonry and contemporary struc-
tures, reflecting the historical evolution of the area.

• Rural Area (Sector 03): Characterized by traditional masonry techniques, with buildings
often constructed for functionality over form, emphasizing low-rise, adaptable designs
suitable for agricultural lifestyles.

Two technicians, with expertise in local construction practices and structural engineering, pro-
vided the data on residential building typologies for each sector. The gathered data ensured that
the classifications reflected actual building practices rather than theoretical models.

Figure 1: Sectors in Bar municipality Bar and location gathered image data.

The EXPLORA-T survey conducted in Bar Municipality identified four main building ty-
pologies, highlighting the diversity of construction practices within the area. These typologies
include three masonry types—confined masonry (M1), unconfined masonry with regular stone
(M2), and unconfined masonry with irregular stone units (M3)—and one reinforced concrete
type (RC1).
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Both interviewed experts reported similar findings regarding the percentage of isolated /
adjoining buildings within each typology, storey height, and the presence of structural irregu-
larities. The main differences between the interviewed experts were related to the percentage
distribution of typologies within the sectors and the presence of certain typologies in specific
sectors. Survey findings in terms of the distribution of building typologies (M1, M2, M3, RC1)
are given in Figure 2. For instance, in Sector S01, Technician 1 reported a dominant presence
of M1 (89%), whereas Technician 2 observed a more varied distribution, noting substantial
amounts of RC1 (60%). The distribution of typologies varied across sectors, with the techni-
cians agreeing more consistently on the prevalence of M1 and M2 in Sector S02 but differing
significantly in their assessments of Sectors S01 and S03. These variations were attributed to
different focuses in their analysis or potential biases based on their individual experiences and
perspectives.

Figure 2: Survey observations of Technician 1 and Technician 2 on the distribution of building
typologies within the Sectors.

The evaluation of the EXPLORA-T survey conducted in Bar Municipality highlights the
importance of rigorous field validation when interpreting survey data, especially in cases where
expert assessments may differ. The insights derived from the field visits and the photographic
documentation process reveal that Technician 1 should be considered more reliable for Sectors
S01 and S02, particularly for RC1 and M1 typologies. For Sector S03, Technician 2’s insights
regarding M1 appear to be more accurate and should be given precedence in further analysis.

2.3 Image Database for Bar

Parallel to the EXPLORA-T survey, an extensive image database was compiled to support
the machine-learning component of the study. Over 1214 images were systematically collected,
ensuring coverage of each identified building typology across all sectors. This extensive col-
lection aimed to ensure that each identified building typology was adequately represented, with
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at least 50 buildings per typology, with 3 different pictures taken from various angles, meaning
150 pictures for each building typology, should be collected in each sector. This choice was
based on a preliminary assessment of the building database of Alvalade, Lisbon [26], where
the training dataset was systematically reduced, and the model’s performance was monitored.
The decision to use 50 buildings per typology within a sector was determined as the minimum
dataset size before a significant decline in model performance was observed. The overview of
the locations where the photographs were taken is shown in Figure 1.

In the image database for Bar Municipality, each photograph is enriched with a compre-
hensive set of attributes essential for a detailed analysis. Geographical details such as the
country, municipality, and precise coordinates ensure each building is accurately mapped. The
database records various building characteristics, including the type of lateral load-resisting sys-
tem present—ranging from none to complex systems like dual frame-wall constructions—and
the materials used, such as reinforced concrete or various forms of masonry, with specific notes
on masonry units when applicable. The construction year of each building is categorized by
significant periods, aligning with developments in local building regulations (i.e. before 1964,
between 1965 and 1981, after 1981). Physical attributes of the buildings, such as the presence
of basements, floor area, and the height of individual floors, are also collected.

Each entry in the database is meticulously documented, including the source of the image
and any supplementary notes that highlight unique features or conditions of the buildings are
added to support further image data processing.

3 METHODOLOGY

The methodology consists of training a CNN model to predict the construction material
of the lateral load-resisting system using given building characteristics. This hybrid approach
overcomes the limitations of image-only recognition by incorporating contextual features that
are not visually observable, such as the construction year or the material type, ensuring more
accurate building classification. It enhances the reliability and interpretability of exposure mod-
els, accounting for diverse construction practices across regions. For this purpose, the CNN
architecture is augmented with additional layers to integrate supplemental data into the model.

The CNN architecture (illustrated in Figure 3) is designed with two primary components.
The first component focuses on feature extraction from images using existing CNN architec-
tures, such as ResNet50 [27], VGGNet [28], DenseNet [29], and LeNet [30]. These models
leverage transfer learning from large existing datasets like ImageNet [24] to identify and cap-
ture visual patterns in images, ensuring robust feature representation for the task. The second
component integrates additional layers from supplemental data, such as construction year and
the number of storeys, into the CNN model. Supplemental data was collected alongside the
image database during the on-the-ground survey, ensuring that relevant building characteristics
were gathered for each image. Integration of additional layers is achieved by concatenating the
final layers of the deep neural network designed for supplemental data with the existing CNN
architecture.

In the first phase, data preparation involves examining the dataset and addressing any rela-
tionships between features. If the dataset is imbalanced, data augmentation techniques should
be applied to improve the model’s accuracy. Image augmentation methods include random
rotation, axis distortion, zooming, horizontal flipping, and random colour transformations to
enhance prediction accuracy and prevent overfitting. Additionally, the supplemental data must
be preprocessed to be effectively used for model training. Preprocessing methods for numerical
and categorical data include feature scaling techniques, such as standardization, normalization,
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and non-linear transformations (e.g., Power Transform and Quantile Transform). In particular,
the methodology uses two types of data retrieved from the image database of Bar presented in
Section 2.3, namely the construction year and the number of storeys; these features are both
categorical data. For categorical features, encoding methods can be used to convert them into
binary vectors.

Figure 3: The proposed CNN architecture (n: total number of data; j, k, l, and m: Dense Unit).

Next, the entire dataset is split into two subsets: one for training and one for testing. Dur-
ing this process, it is essential to ensure that all feature combinations are stratified, meaning
they are proportionally represented in both subsets. This approach helps maintain a balanced
distribution, ensuring that all classes are adequately represented in both the trained model and
the testing phase, leading to a more robust evaluation of the model’s performance. The training
subset is used for hyperparameter tuning and model development, while the testing subset is re-
served for evaluating the model’s final performance. Cross-validation should be applied during
training to ensure robustness and generalizability. Cross-validation involves dividing the train-
ing dataset into multiple subsets and iteratively training the model on one subset while testing
it on the others. This process is repeated several times to ensure each data point is used for
both training and testing, and the results are averaged to provide a reliable estimate of model
performance.

Finally, hyperparameter tuning and fine-tuning are essential to enhance model performance,
prevent overfitting, and adapt a pre-trained model to a new task. Key hyperparameters that
can be adjusted include the optimizer function, activation function, number of epochs, batch
size, learning rate, and number of dense units in the data layer [31, 32]. Furthermore, the
trainability of the top layers should be allowed by modifying the weights of an existing model
for feature extraction [33, 34]. This process is critical for the model to learn new tasks from the
given dataset. Optimizers such as Gradient Descent, Stochastic Gradient Descent, and Adaptive
Gradient Descent are used to minimize loss and optimize model weights. Activation functions,
like the sigmoid function, rectified linear unit (ReLU), and Gaussian function, help the model
learn complex relationships between input features. Further details on some hyperparameters
that can be tuned are provided in Table 1.

4 APPLICATION OF THE METHODOLOGY

The proposed method has been implemented in the selected pilot area, Bar Municipality,
Montenegro. To identify building characteristics and typologies, both the EXPLORA-T sur-
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Hyperparameters Descriptions

Number of Epoch
how many times the learning algorithm will pass through

the entire training dataset during the training process

Batch Size Number of training samples

Learning Rate Step size at each epoch to minimize the loss function

Dense Unit The number of neurons in the tabular layer

Trainable
Feature extraction freezes the weights of

the top layers of the feature extraction layers

Table 1: Some of the hyperparameters and their roles in model tuning.

vey and an onsite survey were conducted, as detailed in the EXPLORA-T Survey and Image
Data Acquisition section. A CNN architecture integrated with tabular data was trained using
building images alongside their respective attributes. The tabular data included the construction
year, categorized into six groups: Unknown (U), Before 1964 (NC), Between 1964 and 1981
(LC), Between 1982 and 2001 (MC), Between 2002 and 2011 (MHC), and After 2011 (HC),
as well as the number of stories, classified into low-rise (LR) for 1–3 storey buildings, mid-rise
(MR) for 4–8 storey buildings, and high-rise (HR) for 9–19 storey buildings. The developed
CNN model is designed to classify the construction material of the lateral load-resisting sys-
tem, distinguishing between reinforced concrete, confined masonry, and unreinforced masonry
based on the building’s image and additional characteristics, i.e. construction age and number
of stories; the latter data is available in the purposedly built database of tabular data acquired
along with images as described in section 2.3.

The conditional probabilities of observed characteristics for each construction material are
presented below to illustrate the relationship between inputs and outputs. An initial analysis of
the data reveals several key insights.

As shown in Figure 4, a large part of RC and CFM buildings were built after 1982, whereas
URM buildings were predominantly built before 1964 or between 1964 and 1981; among the
collected data there are no URM buildings constructed after 2001. Additionally, the distribu-
tions reveal distinct construction trends and time periods associated with each material type of
lateral load-resisting system. RC buildings are predominantly linked to more recent construc-
tion years, while URM buildings correspond to older construction periods.

Figure 5 illustrates the distribution of representative buildings based on the number of storeys
and the material of the lateral load-resisting system. The ”unknown” category (storey number
0) represents cases where specific building information is unavailable. Among buildings with
a CFM lateral load-resisting system, the majority have 2 or 3 storeys, with occurrence proba-
bilities of approximately 48% and 36%, respectively. The minimum number of storeys in this
category is 1, with over 10% of buildings having only a single storey, while the maximum is
3. Additionally, a small proportion of buildings in this category falls under the ”unknown”
classification (3.4%).

RC buildings exhibit the greatest variation in the number of storeys, ranging from a minimum
of 4 to a maximum of 11. The most frequent numbers of storeys are 10 (16%), 11 (16%), and
6 (20%). Additionally, a small portion of RC buildings (3.7%) falls under the ”unknown”
category.

In contrast, URM buildings predominantly have 2 or 1 storeys, with occurrence probabilities
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Figure 4: The distribution of the construction year conditioned on the material of the lateral
load-resisting system.

of approximately 46% and 38%, respectively. The minimum number of storeys in this category
is 1, while the maximum is 4. Only 1% of URM buildings exceed 3 storeys, and 2.6% are
classified as ”unknown.”

Overall, these patterns indicate that RC buildings exhibit the highest variability in the number
of storeys, whereas CFM and URM buildings tend to have lower and more consistent distribu-
tions.

However, these statistics are not considered fully reliable. This method primarily aims to
represent general construction practices rather than produce statistically representative results.
Therefore, the collected images and corresponding information are intended to explore the re-
lationships between inputs and outputs rather than to reflect accurate distributions. Since the
construction year and number of storey are categorical features, they were pre-processed using
the one-hot encoding method before training the model.

The dataset was split into two subsets, with 80% allocated for training and 20% for test-
ing. The testing subset was reserved for the final evaluation of the model’s performance, while
the training subset was used for hyperparameter tuning and model development. Additionally,
Stratified K-fold cross-validation was applied to the training dataset to enhance the model’s
robustness and generalizability. This approach ensured a more comprehensive evaluation, min-
imizing the risks of overfitting and underfitting.

Data augmentation is a commonly used and effective technique for improving prediction
performance. Increasing the dataset size typically enhances accuracy and reduces the risk of
overfitting. Considering these advantages and the limited data available, data augmentation was
implemented before training. The applied techniques included brightness adjustments, random
rotations, vertical and horizontal shifting, contrast adjustment, and horizontal flipping.

As described in the Methodology section, the proposed approach consists of two branches:
one for feature extraction from images and another for incorporating additional information
from supplemental data. For the feature extraction process, well-established CNN architectures
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Figure 5: The distribution of the number of storeys conditioned on the material of the lateral
load-resisting system.

that have demonstrated strong performance on the ImageNet dataset were employed, including
ResNet50V2 [27], Xception [35], and EfficientNetV2 [36]

The proposed method was tuned by optimizing key hyperparameters, including the opti-
mizer, activation function, number of epochs, batch size, learning rate, and dense unit, which
determines the number of neurons in the supplemental data branch. A detailed explanation of
other hyperparameters is provided in Table 1.

Approximately 1,500 models were trained using random search to identify the optimal set
of hyperparameters. To prevent overfitting and encourage the learning of more generalized
features, a dropout rate of 0.3 was applied, randomly deactivating 30% of neurons after each
fully connected layer. After hyperparameter tuning, the final set of selected hyperparameters
was determined based on the model that achieved the highest average F1 score across cross-
validation sets.

All models were trained on a system equipped with a 13th-generation Intel Core i9 proces-
sor, 32 GB of RAM, and an NVIDIA GeForce RTX 4060 GPU. A summary of the selected
hyperparameters and the top five F1 scores, along with their corresponding hyperparameters,
are presented in Table 2 and Table 3, respectively.

Moreover, feature extraction from images was performed using transfer learning from the
ImageNet dataset, providing the pre-trained model with a foundational understanding of visual
patterns. However, since the target task in this project differs from ImageNet’s, the model must
adapt to the new dataset. To achieve this, fine-tuning was applied to the pre-trained model (base
model) by unfreezing the top few layers and using a lower learning rate, allowing it to learn
task-specific patterns, update weights, and refine trainable layers accordingly.

The optimal number of layers to unfreeze depends on factors such as dataset size, similarity
to ImageNet, and model complexity. Given our relatively small dataset, excessive unfreezing
could lead to overfitting. An automated selection process was implemented to determine the
optimal number of layers, iterating through different numbers of trainable layers. As a result,
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Hyperparameters Selected Hyperparameters
CNN Architecture EfficientNetV2S

Optimizer Adaptive Moment Estimation (Adam)
Activation Function Rectified Linear Unit (ReLu)
Number of Epoch 25

Batch Size 64
Learning Rate 0.005

Dense Unit 512

Table 2: Selected hyperparameters.

CNN
Architecture Optim. Activ.

Func.
Number
Epoch

Batch
Size

Learning
Rate

Dense
Unit

F1
Score

EfficientNetV2S adam relu 25 64 0.005 512 0.91
ResNet50v2 adam relu 25 32 0.005 512 0.87

Xception adam relu 10 16 0.005 512 0.85
EfficientNetV2S adam relu 50 16 0.001 256 0.84
EfficientNetV2S adam tanh 50 64 0.005 1024 0.82

Table 3: Five best models’ hyperparameters and F1 scores.

unfreezing and training the top 10 layers yielded the best performance, improving the F1 score
from 0.91 to 0.97 on the validation dataset. This indicates that fine-tuning effectively enhanced
the model’s performance and generalization for the target task.

The accuracy and loss over epochs for the models without fine-tuning and with fine-tuning
are presented in Figures 6 and 7, respectively. The accuracy plot in Figure 6 (without fine-
tuning) indicates that the model learns well during training, achieving high training accuracy,
while the validation accuracy closely follows. This suggests that the model generalizes well,
with no severe overfitting issues, despite minor fluctuations in the validation accuracy. Impor-
tantly, there is no significant drop in validation accuracy as training progresses. The loss plot in
Figure 6 further supports this observation, showing effective learning with an initial steep drop
in loss, confirming that the model optimizes efficiently.

In contrast, the accuracy and loss plots in Figure 7 (with fine-tuning) demonstrate a signif-
icant improvement. The fine-tuned model achieves nearly perfect accuracy, with both training
and validation accuracy remaining close to 1. The corresponding loss plot shows minimal loss
values for both training and validation, with only a slight gap between them, indicating that the
model generalizes exceptionally well. The stability of the validation loss further confirms that
fine-tuning has enhanced the model’s performance without introducing overfitting.

5 RESULTS

As a result, the base model was trained using the EfficientNetV2 architecture with transfer
learning, and its hyperparameters are provided in Table 2. A dropout rate of 0.3 was applied
after each fully connected layer, randomly deactivating neurons during training to prevent over-
fitting and enhance generalisation.

For further improvement, the base model was fine-tuned by unfreezing the last 10 layers of
the EfficientNetV2 model and training with a learning rate of 0.0005, which is lower than that
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Figure 6: Loss and accuracy over epochs for the base model (without fine-tuning).

of the base model. This allowed the final model to better adapt to the target task. Additionally,
early stopping, a regularization technique, was employed to prevent overfitting by monitoring
the validation loss and stopping training if no improvement was observed for five consecutive
epochs.

The final model was evaluated using a test dataset comprising 20% of the initial dataset.
During the dataset split, we ensured that the test set adequately represented all class combina-
tions based on the number of stories, construction year, and construction material, maintaining
a balanced distribution for reliable model evaluation.

The performance of the final model was evaluated using precision, recall, and F1 score met-
rics, as summarized in Table 4. Among the three construction material classes, Reinforced
Concrete (RC) achieved the highest performance, with an F1 score of 0.96. This indicates that
the model is robust in identifying RC buildings, likely due to distinctive building characteristics
that make this class easier to classify. Confined Masonry (CFM) and Unreinforced Masonry
(URM) also have a high performance with an F1 score of 0.94. The weighted average F1 score
of 0.95 reflects the overall balance of the model’s performance across the three classes.

Precision Recall F1 Score
Confined Masonry 0.93 0.96 0.94
Reinforced Concrete 0.93 1.00 0.96
Unreinforced Masonry 0.98 0.91 0.94
Weighted Average 0.95 0.95 0.95

Table 4: Performance metrics of the final model corresponding to the test dataset.

The confusion matrix in Figure 8 provides additional insights into the model’s classification
performance. Reinforced Concrete (RC) buildings were perfectly classified with no misclassi-
fications. This aligns with the high precision and recall observed for RC in Table 4. Confined
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Figure 7: Loss and accuracy over epochs for the proposed model (with fine-tuning).

Masonry (CFM) buildings were correctly classified in 95.6% of cases, with small misclassifi-
cation rates of 2.6% as RC and 1.8% as Unreinforced Masonry (URM). This indicates strong
performance in distinguishing CFM from other categories.

However, URM buildings showed higher misclassification rates, with 9.1% misclassified as
CFM. While the majority (90.9%) of URM buildings were correctly classified, the misclassifi-
cation may stem from similar building characteristics or visual patterns present in the dataset.

The overall model accuracy, calculated at 94.6%, demonstrates a high level of generalizabil-
ity in classifying building types, supported by 97.0% validation accuracy and 97.4% training ac-
curacy. This performance indicates that the model effectively differentiates between Reinforced
Concrete (RC), Confined Masonry (CFM), and Unreinforced Masonry (URM) buildings.

However, further improvements could focus on reducing misclassifications between CFM
and URM, as well as occasional misclassification of CFM as RC. Potential enhancements in-
clude expanding the dataset with more diverse samples, incorporating advanced feature ex-
traction techniques, or integrating additional relevant features. These refinements could help
improve the model’s robustness and further reduce classification errors.

6 EXPLAINABILITY

Misclassifications are an inherent challenge in machine learning models. However, despite
the complexity of convolutional neural networks (CNNs) making their decision-making pro-
cess less interpretable, several techniques exist to enhance explainability. These include Linear
Proxy Models [37], automatic rule extraction [38, 39, 40], and saliency mapping methods such
as Layer-wise Relevance Propagation (LRP) [41], DeepLIFT [42], Class Activation Mapping
(CAM) [43], and Gradient-weighted Class Activation Mapping (Grad-CAM) [44].

By analyzing which regions of an image contribute to a model’s classification at different
layers, researchers can better understand how CNNs distinguish between Reinforced Concrete
(RC), Confined Masonry (CFM), and Unreinforced Masonry (URM) buildings. CNNs base
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Figure 8: Confusion matrix.

their predictions on distinctive patterns such as shapes, textures, and structural features, and
recognizing these cues can help improve both model accuracy and interpretability.

To enhance classification accuracy and minimize errors, CNNs offer interpretability tech-
niques that highlight the key features influencing their predictions. Grad-CAM visually identi-
fies the most relevant regions of an image for decision-making. For example, Grad-CAM can
pinpoint which façade elements or textures contributed to classifying a building as RC, CFM, or
URM. By analysing these visual explanations, researchers can better understand why the model
struggles to distinguish between CFM and URM, which is a challenge reflected in Figure 8,
where 9.1% of URM buildings were misclassified as CFM. These visualization techniques im-
prove model transparency and can inform data refinement strategies, such as incorporating more
representative samples or applying feature engineering to address overlapping characteristics.
Despite inherent challenges, CNNs’ ability to provide interpretable outputs demonstrates their
potential for enhancing classification performance in future iterations.

Figures 9, 10, and 11 display Grad-CAM visualizations for both correct and incorrect clas-
sifications of CFM and URM, while only correct classifications are shown for RC buildings, as
no misclassifications occurred in this category, respectively. These visualizations reveal certain
challenges affecting classification accuracy. Some building images were partially obstructed by
objects such as trees, fences, or surrounding structures, concealing key features necessary for
accurate classification. Additionally, photographs taken from considerable distances limited the
model’s ability to capture crucial textures, shapes, and patterns associated with construction ma-
terials. These limitations significantly affected the model’s performance in correctly identifying
the lateral load-resisting system. Furthermore, similarities between construction materials, such
as balconies in RC and CFM buildings, added to the classification complexity, contributing to
misclassifications.
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Figure 9: Examples of Grad-CAM maps representing true and false predictions for CFM.

Figure 10: Examples of Grad-CAM maps, representing true and false predictions for URM.
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Figure 11: Examples of Grad-CAM maps, representing true predictions for RC.

7 CONCLUSION

The results indicate that convolutional neural networks (CNNs) integrated with supplemen-
tal data present a promising approach for the automated collection of exposures. While some
studies, such as Gouveia et al. (2024), highlight the challenges of predicting construction mate-
rials, particularly due to façades not always providing clear identification or renovations altering
the original materials, these limitations can be mitigated by leveraging reliable image datasets
and supplemental information. Training the model on high-quality images alongside relevant
supplemental data can identify common visual patterns and incorporate additional contextual
information to improve predictions. Consequently, concerns about historic renovations alter-
ing material identification become less relevant, as similar renovation practices in historic sites
would maintain a level of consistency in the dataset.

Furthermore, hyperparameter tuning and fine-tuning processes enable models to learn ef-
fectively even with relatively small datasets through transfer learning, making the model more
adaptable to its intended task.

The model’s performance can be further enhanced by incorporating additional supplemental
data, which could introduce expert-driven insights into material classification. Additionally,
instead of predicting a single most probable construction material, the model could estimate the
probability distribution of different materials, thereby supporting probabilistic exposure models.
These models would offer valuable insights into the variability and uncertainty of construction
material classification.

As previously emphasized, explainability is critical for decision-makers to understand the
reasoning behind AI-driven predictions and adjust the model based on expert knowledge. In-
stead of solely relying on image-based pattern recognition, the model could be enhanced by
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predicting the presence of specific architectural features associated with construction materi-
als. For instance, long cantilevers or wide openings in façades may indicate RC structures,
while arched entrances may suggest URM buildings. Incorporating such explicit feature-based
predictions would increase model interpretability and make the system more transparent and
practical for real-world applications.
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