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Abstract. The mechanical response of an auxetic material obtained by an original periodic mi-
crostructure is investigated when loaded by a concentrated loading. This is intended to provide
an initial insight for applications to localised impact problems. The unit cell is designed using
a plane heuristic molecule approach which is based on a Rigid-Body-Spring-Model (RBSM)
that includes both centred and non-centred bond-springs between specifically shaped heuristic
atoms. A linear static analysis is firstly presented, then this is extended to include non-linear
constitutive laws for the bonds. Bond elastic stiffness is calibrated through energy equiva-
lence with a macro-scopic elastic and isotropic Cosserat continuum. Non-linear bond laws
are proposed to model potential bond-atom contact under compression and elastic-perfectly
plastic behaviour under tension. Parameters that govern the contact onset are explored to
assess its influence on the macro-scale mechanical response of the material layer under con-
centrated loading. While this parametric study is exploratory, we discuss the advantages of the
proposed microstructure for impact applications, by observing its ability to disperse tension-
induced damage away from the impact zone conditioned by the bond deformation for contact
onset.
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1 INTRODUCTION

The use of discrete approaches for the design of internal geometries in architected materials
is currently being explored [9]. Discrete approaches are well established for the modelling of
microstructures with exotic properties, as for instance pantographic structures [4, 5] or auxetic
foams [3]], but also to develop functional materials for different fields of application. Matlack
et al. [6]] developed a material with weakly interacting 2D unit cells, enabling the creation of
Veselago lenses, zero-dispersion bands, and topological surface phonons. Wang et al. [8] used
periodic and discrete 2D unit cells to evaluate the wave propagation properties of metamaterials.

It was demonstrated in [2] that the use of a discrete model based on an heuristic molecule
(HM) can, depending on the topology adopted, allow the modelling of materials with either
a positive or negative Poisson’s ratio v. It has been also demonstrated that a micropolar HM
can feature an isotropic response under a linearized assumption for the spring-based bonds
under uni-axial and a deviatoric deformation modes. Such findings were further explored under
non-linear geometric hypothesis, and that isotropy tends to be lost under progressively large
deformations [3]]. Besides the ability of the micropolar heuristic molecular model to be used
as a mathematical tool to predict the mechanical response of materials with —1.0 < v < 0.33
(under Plane-Stress), one highlights that the discrete nature of the approach provides a unique
framework to design microstructures with a-priori targeted mechanical properties.

To explore the possibility of design different microstructures with targeted mechanical prop-
erties, we investigate here the response of different HMs for different case studies in respect to
macro-scale Cauchy-type materials, i.e. “simple materials” as designated by Noll [7]. Then,
by including material non-linearity, we apply it for the study of an impact-like concentrated
loading. Non-linearity is lumped in the bonds that follow an elastic-perfectly plastic behaviour
under tension and an elastic-hardening law in compression in order to model of a potential
bond-atom contact. Parameters that govern the contact onset are explored to assess its influence
on the macro-scale mechanical response of a material layer under impact. While this study
has an exploratory nature, we discuss the advantages of the designed auxetic microstructure, by
observing its ability to disperse tension-induced damage away from the impact zone and reduce
indentation.

2 BOND-BASED HEURISTIC MOLECULAR MODEL

A linearized and two-dimensional micropolar bond-based heuristic molecular model is briefly
described. It is based on the hypothesis of pair-potentials and further details can be found in
[2,13]. A plane solid material consists of a finite number of heuristic molecules (HM). Each HM
is made by heuristic atoms that possess a specific polygonal shape and that are significantly
more rigid than the other components of the system. These atoms are disposed according to
a regular lattice arrangement and only adjacent atoms interact via bonds characterized by an
elastic potential through bond-spring elements. The complete set of centred and non-centred
bonds include axial bonds, cyan (horizontal and vertical) and red (diagonal) springs, and shear
bonds, which are non-centered and orthogonal to the direction of the bonded atoms and are
represented by magenta and green springs. These bond types are shown in Figure [I] The cor-
responding generalised stiffnesses are named as follows: k. (cyan bonds), k, (red bonds), k,,
(magenta bonds), k, (green bonds).
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2.1 Linearized kinematics and deformation energy
The kinematic mapping x between a given reference (undeformed) configuration X and a

deformed one X is glven as xy : X - X The relative Lagrangian displacements and rotations
are given as U = X-Xand ¥ = & — ®, respectively. For an arbitrary bond b, W1th1n the
material domain (2, that links atoms ¢ and 7, the bond vector d; is given in Eq. and the
deformed bond vector db in Eq. ( .

dy=(x’ +1)) — (x'+71}) | (1)

dy= (X + 1) — (X +1) , )

where r} and ri represent the rigid arms of the bond b with respect to atoms ¢ and 7, respectively.
The vectors 1 and f“Z denote the rigid arms of the atoms after the deformation of the bond b.
The relative displacement vector of bond b, linking atoms ¢ and j, is described as d, and is
determined according to the global reference frame by §, = &b — d;. The bonds experience
simple axial deformations and resemble axial springs. The strain energy for an arbitrary bond b
with stiffness k;, and direction &, in the reference configuration has a quadratic dependence on
the variation of the initial bond length:

,(80) = Sho(&, 87 ®)

2.2 Relation with a reference continuum FE model

The constitutive response of the HM can be established as related to a micropolar continuum
through energy equivalence. This allows to establish a mathematical bridge that eases the design
process of micro-structures according to desired continuum macroscopic mechanical properties.
The constitutive response in isotropic linear elasticity is described by:

(S ) [ Ciiir Ciioe 0 0 0 0 | ( En )
Sa2 Cii22 Cooz 0 0 0 0 Eoy
Sz | _ 0 0 G+G. G-G, 0 0 Eis @
So1 0 0 G-G. G+dG. 0 0 FEy ’
My 0 0 0 0 2642 0 Ky
S N 0 0 0 26d | | K |

in which Ci11; = Cop99 = % and Cjy99 = f?—l’j for a Plane-Stress (PS) problem; the Cosserat
shear modulus GG. governs the specific skew-symmetric contribution to the shear elastic re-
sponse; and d is the internal characteristic length associated to in-plane bending. Through the
equivalence of strain energy density between the HM and a PS continuum, the stiffness of the
bonds is determined. A total of five kinematic modes are considered: in-plane bending, the
micropolar, uniaxial, deviatoric, and hydrostatic modes [2, 3]]. The elastic stiffness for bonds is
subsequently calculated:

d 2 1
KPS — G R s R 1 26—+, )
‘ vl " 1—v
kPS =G — k. ,G?:ll%e
1—v
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2.3 Design of the internal periodic unit-cell of 2D materials

The heuristic bond-based molecular model can be used for the design of two-dimensional
materials with a periodic unit-cell. The unit-cell is retrieved from the proposed HM model and
following the relations derived, according to a micropolar continuum, for the stiffness of bonds.

From the HM model and to guarantee that all bonds have a non-negative stiffness, the range
of possible Poisson’s ratio can be written in terms of k. according to Eq. (6):

ko€ 10,G] - v e [5G, e | (©)

For the limit case where cyan bonds are nonexistent, i.e. k. = 0, the microstructure can
display a limit of Poisson’s ratio v”> = —1. Therefore, by removing the cyan bonds, one can
obtain either a ultra-soft auxetic material with £ ~ 0 MPa, or a material with null Poisson’s
ratio.

For the auxetic microstructure, it has been envisaged to obtaina v = —0.99 nd v = —0.90
for which the cyan bonds are defined to have, respectively, k. = 0.001G and k. = 0.01G. For
the proposed auxetic internal structures and through Eq. (), all the possible bonds exist as
shown in Figure [T(a). The design of the HM topology for a material with standard Poisson’s
ratio of v = +0.2 can be also obtained and following several combinations for the stiffness of
bonds. Here, a value of k, = ¢ was chosen to remove the magenta bonds as, according to Eq.
(), k., = 0. The defined topology is shown in Figure [I(b).

N
A

A —€, T, U (a) Ultra-soft microstructure , v = —0.99/v = —0.90 (b) Soft microstructure , v = +0.2

2
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Figure 1: Examples of topologies for microstructures designed according to the RBSM approach.

3 APPLICATION

The proposed heuristic molecular model is applied to predict the mechanical response of
either auxetic and standard materials, at the macro-scale. First, it is demonstrated how two
materials designed with the micropolar molecular modelling can feature an alike response with
classical beam theories when subjected problems governed by bending. Then, it is demonstrated
how the response of such materials is also alike under linear conditions for an impact like static
loadings.

3.1 Benchmark 1: shear deformability and micropolar effects

The maximum deflections of solid beams with the same Young’s modulus F but very dif-
ferent Poisson’s ratios and slenderness ratio A, subjected to a uniform distributed loading, have
been compared as a first benchmark. A simply supported and a cantilever beam have been
studied assuming that the internal structure is designed according to a HM micropolar molec-
ular model. Two different HM materials are designed, i.e. having a Young’s modulus £ and a

4
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v =40.10 orav = —0.99. The design of the internal geometries of such materials through the
molecular model is achieved by considering a k, = G for a v = +0.10 and a k, = 0.001G for
av = —0.99.

Figure [2| presents the ratio of maximum vertical displacement § between a very auxetic ma-
terial and the material with standard Poisson coefficient. For slender beams with [ = 10A such
that A\=! = 0.05, there are differences in the deflection of both materials. The decrease of slen-
derness leads to a reduction of the maximum deflection for the beams made with an auxetic
microstructure. This trend is expected due to the auxetic and micropolar characteristic of this
internal structure. The relative contribution of the shear deformation is larger for squat beams
and, as G — oo when v — —1.0, the shear deformation is very small with respect to the
v = 40.1 case. Second, due to the role played by the coupled-stress stiffness which is very

significant since G is very large when v = —0.99.
1.2
Cantilever beam l.lé ~- o
N °- o '
1 ___\_Q________:_: S == 10 _|  reduced area with high V6
Q ~
09 F o ~
~a
~
0.8 F ~
[ S o

Simply supported beam ~ e
ply supp .| - | .
q S k
HHTTTT N :
S .\
0.6 _ N ~ IS
h$ KE =0 v =-0.99 : cantilever beam S / |

~ e
3 S band with high V6
YO - Y= - - g S ] sz
) 0.5 O v =-0.99 : simply supported beam S / I
° ’

04 L L L L L L L L
Figure 2: Ratio of vertical deflection in respect to a HM with v = +0.10 and v = —0.99 for different A /! ratios.
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Note that the effect of the boundary condition is also more evident for a squat beam as
demonstrated in Figure 2] In the cantilever beam, the band in the vicinity of the support has
a significant curvature that leads to the activation of an extra bending stiffness term related
with the coupling stress between rigid elements. This is also clear from the deformed shapes
presented for both beams. This effect was demonstrated for block-based materials in [1]], where
the increase of stiffness due to the latter effect is indirectly concluded by the increase of the
fundamental frequency of the beam.

A further analysis is conducted to compare the response between the use of a micropolar
microstructure with the one found with classic Euler and Timoshenko beam theories. The max-
imum deflection obtained for each analysed case is normalized according to the Euler-beam
result, as shown in Figure @ For both materials, the classic Euler-Bernoulli beam theory under-
estimates the displacement in respect to a Timoshenko beam theory for increasing length values
[ of the beam (gray lines). This trend is expected and kept for the heuristic molecule (HM) model
in the simply supported beam and for the cantilever beam when v = +0.10. Here, a different
trend is observed when v = —0.99. This is related to the addressed coupled-stress effect that
is more evident for low slenderness values. The extra bending stiffness provided by the auxetic
and micropolar microstructure is able to reduce the maximum deflection of =~ 50% in respect
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to a Cauchy-type material. At last, as expected, when v — —1.0 the d7imoshenko = OEuler SINCE
the shear correction term of a classical Timoshenko theory is reduced by a factor provided by
(1+v).
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Figure 3: Ratio of vertical deflection between the HM and Euler/Timoshenko beam theories for different beam
slenderness values .

3.2 Benchmark 2: impact-like problem

The HM model is applied to design two numerical examples subjected to a concentrated,
impact-like, load. The impact is modelled as a quasi-static concentrated load applied in a 2D
rectangular layer of material with dimensions 3h x h m? (base x height) supported along the
bottom edge. Two materials are designed using the HM model, i.e. a material with v = +0.20
and another with v = —0.90, and their mechanical response is compared. It is assumed first that
both materials have the same Young’s modulus and behave linearly. Results from Figure [{4[(a)
show that the auxetic microstructure is stiffer and requires around 59% more force for the same
vertical displacement in respect to the standard material. Difference is reduced significantly if
the axial stiffness of the latter is increased, see Figure f[b) for a Egandara = 1.50 Egyzetic-

A quite different response is observed between both microstructures when material non-
linearity is modelled. It is hypothesized that the shear displacement bond-springs (magenta and
green) and the diagonal axial bond-springs (red) have a elastic-perfectly plastic behaviour under
tension and compression and with a yielding strain of £, = 5x1073. On the other hand, the axial
bonds (cyan) have an elastic-perfectly plastic behaviour under tension with ¢, = 5x 1072, while
an elastic-hardening behaviour is assumed in compression. It is assumed that the hardening
stiffness of the axial (cyan) bonds is equal to G in order to simulate contact (initial stiffness
found from Eq. [5)). The onset of the hardening law is governed by an input-scalar b, such that
the threshold deformation is provided as €, = be,,.

From Figure ffc)-(d), it is evident that the auxetic material is able to withstand a force that
is significantly greater. The role of contact under compression plays an important role. For
larger values of the constitutive parameter b, the onset of contact occurs for a larger deforma-
tion of the axial (cyan) bonds and, therefore, both the energy absorbed from contact and the
resisting impact force decrease. The auxetic microstructure allows to have a lower indentation

6
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Figure 4: Indentation Force-displacement curve. Adopted yielding strain of &, = 5 x 1073.

displacement. The map of vertical displacements of Figure [5] shows a local indentation when
v = +0.20, while the response is quite different when v = —0.90, for which the maximum ver-
tical displacements is five times lower. The effect of the coupled-stress stiffness term 2Gd? in
Eq.(), addressed in benchmark 1 (sub-section [3.1)), plays a key role in propagating the damage
to areas that are far in respect to the vicinity of the impact region.

Vertical displacement map (m)
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Figure 5: Map of vertical displacement for an impact load of 0.1 kN. Adopted yielding strain of ¢, = 5 x 1073
and a parameter b = 1.0.

4 FINAL REMARKS

A micropolar molecular model, which stems from a Rigid-Body-Spring Model (RBSM),
is applied as a framework for the design of different microstructures that can either have a
standard or a negative Poisson’s ratio. The unit-cell, i.e. the heuristic molecule, consists of
shaped atoms connected by spring-based bonds. The stiffness of these bonds is derived within
an objective framework that relates the stiffness to the macroscopic elastic properties of the
targeted isotropic micropolar material. This study addressed first how the mechanical response
of microstructures designed with the micropolar heuristic molecular approach differs from that

7
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of materials modelled according to a Cauchy-based continuum. This was demonstrated by
modelling 2D beams with different slenderness ratios and boundary conditions and made of an
auxetic or standard (positive) Poisson’s ratio. Despite sharing the same Young’s modulus, the
shear deformation and micropolar effects play a critical role depending either on the slenderness
ratio and boundary conditions. The investigation was then further extended to study a planar
domain under a concentrated impact load. Linear and non-linear material response have been
considered. It is shown that despite the response is comparable in the linear elastic field, the
non-linear response is significantly different. The auxetic microstructure proved to resist a
significant larger load. Damage is lower, but it propagated around the impact zone such that the
indentation displacements tend to reduce significantly. The onset of contact between the rigid
elements of the internal structure when in compression, together with the auxetic nature that
allows a significant increase of the shear stiffness and in the related local bending stiffness from
coupled-stress, play a critical role.
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